Practical L^{p} Polynomial Approximation

By F. D. Burgoyne

Let p denote a positive integer, and let $P_{p q}(x)$ denote the polynomial of degree q with coefficient of x^{q} unity which gives the least value when the p th power of its modulus is integrated over ($-1,1$). The extension of what is given below to an interval other than $(-1,1)$ is trivial. The existence and uniqueness of $P_{p q}(x)$ follows from the general theory of L^{p} approximation, see, for example, [1].

If we write $P_{p q}(x)=\left(x-x_{1}\right) \cdots\left(x-x_{q}\right)$, we may deduce from elementary considerations that the x_{r} are real, interior to ($-1,1$), symmetrically placed with respect to $x=0$ and distinct.

Clearly $P_{1 q}=2^{-q} U_{q}(x)$, where $U_{q}(x)$ is the Chebyshev polynomial of the second kind of degree q, and $P_{2 q}(x)=\left\{2^{q}(q!)^{2} /(2 q)!\right\} P_{q}(x)$, where $P_{q}(x)$ is the Legendre polynomial of degree q. Since $U_{q}(x)$ and $P_{q}(x)$ are the ultraspherical polynomials $P_{q}{ }^{(1)}(x)$ and $P_{q}^{(1 / 2)}(x)$ respectively, it may be conjectured that $P_{p q}(x)$ $=k_{q} P_{q}{ }^{(1 / p)}(x)$; however this is disproved by the fact that the zeros of $P_{42}(x)$ are about ± 0.629, while those of $P_{2}^{(1 / 4)}(x)$ are about ± 0.632.

Below we tabulate the positive zeros of $P_{p q}(x)$ to five decimal places for $p, q=2(1) 7$ (table 1). To each positive zero there corresponds a negative zero of equal magnitude, and, for odd $q, x=0$ is also a zero. The coefficients of $P_{p q}(x)$ may be obtained from the given zeros. We also tabulate $L^{p}\left(P_{p q}\right)$, where $L^{p}(f)$ denotes $\left\{\int_{-1}^{1}|f(x)|^{p} d x\right\}^{1 / p}$. The case $p=1$ was not included since we have $P_{1 q}(x)$ $=(x-\cos (\pi /(q+1))) \cdots(x-\cos (q \pi /(q+1)))$ and $L^{1}\left(P_{1 q}\right)=2^{1-q}$. On the other hand the case $p=2$ was included for convenience and purposes of comparison, although $P_{2 q}(x)$ is essentially a well-known polynomial. Note that, for all p, $P_{p 0}(x)=1$ and $P_{p 1}(x)=x$.

The zeros x_{r} were evaluated as follows. Suppose first that q is even with $Q=\frac{1}{2} q$, then we may take $P_{p q}(x)=\left(x^{2}-x_{1}{ }^{2}\right) \cdots\left(x^{2}-x_{Q}{ }^{2}\right)$ where $0<x_{1}<\cdots<$ $x_{0}<1$. In particular, for $p=1$ we have $x_{r}=\cos ((Q-r+1) \pi /(q+1))$. Since $\int_{-1}^{1}\left|P_{p q}(x)\right|^{p} d x$ is a minimum we obtain

$$
\int_{0}^{1}\left\{\left|x^{2}-x_{1}{ }^{2}\right|^{p} \cdots\left|x^{2}-x_{Q}{ }^{2}\right|^{p} /\left(x^{2}-x_{r}^{2}\right)\right\} d x=0
$$

We now solve these equations iteratively by taking $x_{r 0}(p)=x_{r}(p-1)$ (where the notation shows the dependence on p) and $x_{r(s+1)}^{2}=x_{r s}^{2}+\epsilon_{r s}$, where $p b_{r 1 s} \epsilon_{1 r}+\cdots+$ $p b_{r Q_{s}} \epsilon_{Q_{s}}-b_{r r s} \epsilon_{r s}=a_{r s}$,

$$
a_{r s}=\int_{0}^{1}\left\{\left|x^{2}-x_{1 s}^{2}\right|^{p} \cdots\left|x^{2}-x_{Q s}^{2}\right|^{p} /\left(x^{2}-x_{r s}^{2}\right)\right\} d x
$$

and

$$
b_{r t s}=\int_{0}^{1}\left\{\left|x^{2}-x_{1 s}^{2}\right|^{p} \cdots\left|x^{2}-x_{Q s}^{2}\right|^{p} /\left(x^{2}-x_{r s}^{2}\right)\left(x^{2}-{ }_{t s}^{2}\right)\right\} d x
$$

This amounts to ignoring powers higher than the first in the ϵ 's, and the convergence is quite rapid. If q is odd and we define $Q=\frac{1}{2}(q-1)$ the above expressions are unaltered except that each integrand contains the term x^{p}. The computation was carried out on the University of London Atlas.

Table 1

p	q	Positive zeros of $P_{p q}(x)$			$L^{p}\left(P_{p q}\right)$
2	2	0.57735			0.42164
3	2.	0.61047			0.41318
4	2	0.62921			0.41476
5	2	0.64140			0.41855
6	2	0.65003			0.42271
7	2	0.65648			0.42670
2	3	0.77460			0.21381
3	3	0.80053			0.21003
4	3	0.81444			0.21086
5	3	0.82319			0.21268
6	3	0.82923			0.21464
7	3	0.83368			0.21652
2	4	0.33998	0.86114		0.10775
3	4	0.35223	0.87991		0.10596
4	4	0.35886	0.88968		0.10637
5	4	0.36304	0.89571		0.10725
6	4	0.36592	0.89983		0.10819
7	4	0.36804	0.90283		0.10909
2	5	0.53847	0.90618		0.05415
3	5	0.55310	0.92004		0.05328
4	5	0.56087	0.92712		0.05348
5	5	0.56571	0.93144		0.05391
6	5	0.56903	0.93437		0.05437
7	5	0.57146	0.93649		0.05480
2	6	0.23862	0.66121	0.93247	0.02717
3	6	0.24470	0.67513	0.94302	0.02674
4	6	0.24792	0.68244	0.94834	0.02684
5	6	0.24991	0.68695	0.95157	0.02705
6	6	0.25128	0.69003	0.95374	0.02728
7	6	0.25227	0.69227	0.95531	0.02749
2	7	0.40585	0.74153	0.94911	0.01362
3	7	0.41442	0.75396	0.95738	0.01341
4	7	0.41891	0.76041	0.96150	0.01346
5	7	0.42169	0.76438	0.96399	0.01356
6	7	0.42358	0.76708	0.96566	0.01367
7	7	0.42495	0.76903	0.96687	0.01378

The tables enable practical L^{p} polynomial approximation to be performed approximately in a variety of ways. Thus, to obtain an L^{p} polynomial approximation of degree $q-1$ over $(-1,1)$ to a function $f(x)$, we may collocate at the zeros of $P_{p q}(x)$, and so get an error of $\left(x-x_{1}\right) \cdots\left(x-x_{q}\right) f^{(q)}(\xi) / q!=P_{p q}(x) f^{(q)}(\xi) / q!$, where ξ belongs to $(-1,1)$, assuming the existence and continuity of $f^{(q)}(x)$ over the interval. In the L^{p} sense this error is the least possible if $f^{(q)}(x)$ is constant over the interval, and in other cases the method may be assumed to give a good approxima-
tion to the desired polynomial.* Alternatively, if $f(x)$ possesses a power series expansion we may truncate the latter at the term involving x^{Q}, where $Q \geqq q$, and rearrange the resulting polynomial in terms of $P_{p 0}(x), P_{p 1}(x), \cdots, P_{p Q}(x)$ and "economize" (in an analogous way to Lanczos' economization procedure [2]) to a polynomial of degree $q-1$ expressed in terms of $P_{p 0}(x), P_{p 1}(x), \cdots, P_{p(q-1)}(x)$. In this case an upper bound for the error in the L^{p} sense is given by the sum of the p th root of the integrals of the p th power of the modulus of the neglected terms. In both methods the L^{p} error may be estimated by using the tabulated values of $L^{p}\left(P_{p q}\right)$. In special cases it may be convenient to use other methods to approximate $f(x)$. Thus, if $f(x)$ satisfies a suitable differential equation, we could use a procedure rather like that of Clenshaw [3] for Chebyshev-type approximation. A similar technique may be used if $f(x)$ is a rational function.

Finally we consider a simple numerical example in which $f(x)=\log \left(\frac{3}{2}+x / 2\right)$, $p=3$ and $q=3$. Starting with the approximation $f(x) \doteq \log \frac{3}{2}+x / 3-x^{2} / 18$ $+x^{3} / 81$ a simple iterative method gives the best approximation as $f(x) \doteq 0.40579$ $+0.33304 x-0.05852 x^{2}+0.01346 x^{3}$, with an L^{3} error of about 0.00037 . The results given by using the tables in conjunction with the principal approximate methods outlined above are as follows.

Collocation: $f(x) \doteq 0.40578+0.33325 x-0.05850 x^{2}+0.01313 x^{3}, L^{3}$ error about 0.00039 .

Economization with $Q=5: f(x) \doteq 0.40576+0.33312 x-0.05833 x^{2}+$ $0.01328 x^{3}, L^{3}$ error about 0.00039 .

University of London
King's College
Mathematics Department
London, W.C. 2
England

1. D. Jackson, Trans. Amer. Math. Soc., v. 22, 1921, pp. 117-128, 320-326.
2. C. Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1956. MR 18, 823.
3. C. W. Clenshaw, "The numerical solution of linear differential equations in Chebyshev series," Proc. Cambridge Philos. Soc., v. 53, 1957, pp. 134-149. MR 18, 516.

* If $a(x)$ is an approximation to a function $f(x)$, we call $L^{p}(a-f)$ the error in the L^{p} sense, or simply the L^{p} error.

