Practical L^{r} Polynomial Approximation

By F. D. Burgoyne

Let p denote a positive integer, and let $P_{pq}(x)$ denote the polynomial of degree q with coefficient of x^q unity which gives the least value when the pth power of its modulus is integrated over (-1, 1). The extension of what is given below to an interval other than (-1, 1) is trivial. The existence and uniqueness of $P_{pq}(x)$ follows from the general theory of L^p approximation, see, for example, [1].

If we write $P_{pq}(x) = (x - x_1) \cdots (x - x_q)$, we may deduce from elementary considerations that the x_r are real, interior to (-1, 1), symmetrically placed with respect to x = 0 and distinct.

Clearly $P_{1q} = 2^{-q}U_q(x)$, where $U_q(x)$ is the Chebyshev polynomial of the second kind of degree q, and $P_{2q}(x) = \{2^q(q!)^2/(2q)!\}P_q(x)$, where $P_q(x)$ is the Legendre polynomial of degree q. Since $U_q(x)$ and $P_q(x)$ are the ultraspherical polynomials $P_q^{(1)}(x)$ and $P_q^{(1/2)}(x)$ respectively, it may be conjectured that $P_{pq}(x) = k_q P_q^{(1/p)}(x)$; however this is disproved by the fact that the zeros of $P_{42}(x)$ are about ± 0.629 , while those of $P_2^{(1/q)}(x)$ are about ± 0.632 .

Below we tabulate the positive zeros of $P_{pq}(x)$ to five decimal places for p, q = 2(1)7 (table 1). To each positive zero there corresponds a negative zero of equal magnitude, and, for odd q, x = 0 is also a zero. The coefficients of $P_{pq}(x)$ may be obtained from the given zeros. We also tabulate $L^p(P_{pq})$, where $L^p(f)$ denotes $\{\int_{-1}^{1} |f(x)|^p dx\}^{1/p}$. The case p = 1 was not included since we have $P_{1q}(x)$ $= (x - \cos(\pi/(q + 1))) \cdots (x - \cos(q\pi/(q + 1)))$ and $L^1(P_{1q}) = 2^{1-q}$. On the other hand the case p = 2 was included for convenience and purposes of comparison, although $P_{2q}(x)$ is essentially a well-known polynomial. Note that, for all p, $P_{p0}(x) = 1$ and $P_{p1}(x) = x$.

The zeros x_r were evaluated as follows. Suppose first that q is even with $Q = \frac{1}{2}q$, then we may take $P_{pq}(x) = (x^2 - x_1^2) \cdots (x^2 - x_q^2)$ where $0 < x_1 < \cdots < x_q < 1$. In particular, for p = 1 we have $x_r = \cos((Q - r + 1)\pi/(q + 1))$. Since $\int_{-1}^{1} |P_{pq}(x)|^p dx$ is a minimum we obtain

$$\int_0^1 \{ |x^2 - x_1^2|^p \cdots |x^2 - x_q^2|^p / (x^2 - x_r^2) \} dx = 0.$$

We now solve these equations iteratively by taking $x_{r0}(p) = x_r(p-1)$ (where the notation shows the dependence on p) and $x_{r(s+1)}^2 = x_{rs}^2 + \epsilon_{rs}$, where $pb_{r1s}\epsilon_{1r} + \cdots + pb_{rQs}\epsilon_{Qs} - b_{rrs}\epsilon_{rs} = a_{rs}$,

$$a_{rs} = \int_0^1 \{ |x^2 - x_{1s}^2|^p \cdots |x^2 - x_{Qs}^2|^p / (x^2 - x_{rs}^2) \} dx$$

and

$$b_{rts} = \int_0^1 \{ |x^2 - x_{1s}^2|^p \cdots |x^2 - x_{Qs}^2|^p / (x^2 - x_{rs}^2)(x^2 - x_{ts}^2) \} dx.$$

This amounts to ignoring powers higher than the first in the ϵ 's, and the convergence is quite rapid. If q is odd and we define $Q = \frac{1}{2}(q - 1)$ the above expressions are unaltered except that each integrand contains the term x^{p} . The computation was carried out on the University of London Atlas.

Received May 16, 1966. Revised July 31, 1966.

F. D. BURGOYNE

р	q	Positive zeros of $P_{pq}(x)$			$L^p(P_{pq})$
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7$	2 2 2 2 2 2 2 2	$\begin{array}{c} 0.57735\\ 0.61047\\ 0.62921\\ 0.64140\\ 0.65003\\ 0.65648\end{array}$			$\begin{array}{c} 0.42164 \\ 0.41318 \\ 0.41476 \\ 0.41855 \\ 0.42271 \\ 0.42670 \end{array}$
2 3 4 5 6 7	3 3 3 3 3 3 3	$\begin{array}{c} 0.77460 \\ 0.80053 \\ 0.81444 \\ 0.82319 \\ 0.82923 \\ 0.83368 \end{array}$			$\begin{array}{c} 0.21381 \\ 0.21003 \\ 0.21086 \\ 0.21268 \\ 0.21464 \\ 0.21652 \end{array}$
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7$	4 4 4 4 4 4	$\begin{array}{c} 0.33998\\ 0.35223\\ 0.35886\\ 0.36304\\ 0.36592\\ 0.36804 \end{array}$	$\begin{array}{c} 0.86114\\ 0.87991\\ 0.88968\\ 0.89571\\ 0.89983\\ 0.90283 \end{array}$		$\begin{array}{c} 0.10775\\ 0.10596\\ 0.10637\\ 0.10725\\ 0.10819\\ 0.10909 \end{array}$
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7$	5 5 5 5 5 5 5 5	$\begin{array}{c} 0.53847 \\ 0.55310 \\ 0.56087 \\ 0.56571 \\ 0.56903 \\ 0.57146 \end{array}$	$\begin{array}{c} 0.90618\\ 0.92004\\ 0.92712\\ 0.93144\\ 0.93437\\ 0.93649 \end{array}$		$\begin{array}{c} 0.05415\\ 0.05328\\ 0.05348\\ 0.05391\\ 0.05437\\ 0.05437\\ 0.05480\end{array}$
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7$	6 6 6 6 6	$\begin{array}{c} 0.23862 \\ 0.24470 \\ 0.24792 \\ 0.24991 \\ 0.25128 \\ 0.25227 \end{array}$	$\begin{array}{c} 0.66121 \\ 0.67513 \\ 0.68244 \\ 0.68695 \\ 0.69003 \\ 0.69227 \end{array}$	$\begin{array}{c} 0.93247\\ 0.94302\\ 0.94834\\ 0.95157\\ 0.95374\\ 0.95531 \end{array}$	$\begin{array}{c} 0.02717\\ 0.02674\\ 0.02684\\ 0.02705\\ 0.02705\\ 0.02728\\ 0.02749\end{array}$
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7$	7 7 7 7 7 7	$\begin{array}{c} 0.40585\\ 0.41442\\ 0.41891\\ 0.42169\\ 0.42358\\ 0.42495\end{array}$	$\begin{array}{c} 0.74153 \\ 0.75396 \\ 0.76041 \\ 0.76438 \\ 0.76708 \\ 0.76903 \end{array}$	$\begin{array}{c} 0.94911 \\ 0.95738 \\ 0.96150 \\ 0.96399 \\ 0.96566 \\ 0.96687 \end{array}$	$\begin{array}{c} 0.01362\\ 0.01341\\ 0.01346\\ 0.01356\\ 0.01356\\ 0.01367\\ 0.01378\end{array}$

TABLE 1

The tables enable practical L^p polynomial approximation to be performed approximately in a variety of ways. Thus, to obtain an L^p polynomial approximation of degree q - 1 over (-1, 1) to a function f(x), we may collocate at the zeros of $P_{pq}(x)$, and so get an error of $(x - x_1) \cdots (x - x_q)f^{(q)}(\xi)/q! = P_{pq}(x)f^{(q)}(\xi)/q!$, where ξ belongs to (-1, 1), assuming the existence and continuity of $f^{(q)}(x)$ over the interval. In the L^p sense this error is the least possible if $f^{(q)}(x)$ is constant over the interval, and in other cases the method may be assumed to give a good approxima-

tion to the desired polynomial.^{*} Alternatively, if f(x) possesses a power series expansion we may truncate the latter at the term involving x^{q} , where $Q \geq q$, and rearrange the resulting polynomial in terms of $P_{p0}(x)$, $P_{p1}(x)$, \cdots , $P_{pQ}(x)$ and "economize" (in an analogous way to Lanczos' economization procedure [2]) to a polynomial of degree q - 1 expressed in terms of $P_{p0}(x), P_{p1}(x), \cdots, P_{p(q-1)}(x)$. In this case an upper bound for the error in the L^{p} sense is given by the sum of the pth root of the integrals of the pth power of the modulus of the neglected terms. In both methods the L^p error may be estimated by using the tabulated values of $L^{p}(P_{vo})$. In special cases it may be convenient to use other methods to approximate f(x). Thus, if f(x) satisfies a suitable differential equation, we could use a procedure rather like that of Clenshaw [3] for Chebyshev-type approximation. A similar technique may be used if f(x) is a rational function.

Finally we consider a simple numerical example in which $f(x) = \log(\frac{3}{2} + x/2)$, p = 3 and q = 3. Starting with the approximation $f(x) \doteq \log \frac{3}{2} + \frac{x}{3} - \frac{x^2}{18}$ $+ x^{3}/81$ a simple iterative method gives the best approximation as $f(x) \doteq 0.40579$ $+ 0.33304x - 0.05852x^{2} + 0.01346x^{3}$, with an L^{3} error of about 0.00037. The results given by using the tables in conjunction with the principal approximate methods outlined above are as follows.

Collocation: $f(x) \doteq 0.40578 + 0.33325x - 0.05850x^2 + 0.01313x^3$, L^3 error about 0.00039.

Economization with Q = 5: $f(x) \doteq 0.40576 + 0.33312x - 0.05833x^2 +$ $0.01328x^3$, L^3 error about 0.00039.

University of London King's College Mathematics Department London, W.C. 2 England

D. JACKSON, Trans. Amer. Math. Soc., v. 22, 1921, pp. 117-128, 320-326.
C. LANCZOS, Applied Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1956. MR 18, 823.
C. W. CLENSHAW, "The numerical solution of linear differential equations in Chebyshev series," Proc. Cambridge Philos. Soc., v. 53, 1957, pp. 134-149. MR 18, 516.

* If a(x) is an approximation to a function f(x), we call $L^{p}(a - f)$ the error in the L^{p} sense, or simply the L^p error.